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ABSTRACT

The COLD-SAT free-flying spacecraft was to perform experiments with LH 2 in

the cryogenic fluid management technologies of storage, supply and transfer in

reduced gravity. This paper describes the Phase A preliminary design of the
Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces

and components of the bus subsystems. The TCS was composed of passive

elements which were augmented with heaters. Trade studies to minimize the

parasitic heat leakage into the cryogen storage tanks have been described.

Selection procedure for the thermally optimum on-orbit spacecraft attitude has

been defined. TRASYS-II and SINDA'85 verification analysis was performed on the

design and the results are presented here.
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INTRODUCTION

The COLD-SAT (Cryogenic On-Orbit Liquid Depot- Storage, Acquisition and
Transfer) spacecraft was being developed by NASA Lewis to conduct experiments

in reduced-gravity cryogenic fluid management. The COLD-SAT spacecraft has

recently completed Phase A concept design studies by parallel contracted efforts

with three contractors. At the same time, a similar study has been completed by

Copyright © 1991 by the American Institute of Aeronautics

and Astronautics, Inc. No copyright is asserted in the
United States under Title 17, U.S. Code. The U.S. Govern-

ment has a royalty-free license to exercise all rights under

the copyright claimed herein for Governmental purposes.

All other rights are reserved by the copyright owner.



an in-house design group at NASA Lewis. This paper describes the results of the

TCS preliminary design at the end of this Phase A for the in-house study. Further

efforts to develop the COLD-SAT spacecraft to conduct in-space experiments have

been halted due to the high projected costs of the spacecraft. However, the COLD-

SAT spacecraft and the TCS incorporated some unique design features which

should be of general interest to the aerospace community.

The spacecraft would have performed experiments with LH 2 over a six month

period after launch. Experiments were to be conducted in various technologies

associated with the storage, supply and transfer of LH 2 in space. These

experiments were to provide test data to validate analytical math models presently

being developed. These validated models would then be used to develop criteria
for the design of efficient cryogenic systems and components that are essential in

propulsion and life support functions for future NASA missions.

The thermal design requirements for each of the five modules of the COLD-

SAT spacecraft were extremely diverse. The TCS design described herein had

been customized for the temperature and thermal requirement for each of these

five modules. Since the LH 2 was a valuable commodity on board the spacecraft, it

was essential to store this cryogen for the duration of the experiments. This was

achieved by minimizing the parasitic heat leakage into the cryogenic system. This

required maintaining minimum temperatures on all components, that were either

conductively or radiatively coupled to the cryogenic storage tanks. On the other

hand, efficient operation of components of the spacecraft bus subsystems required
that the temperature of the electronics boxes, hydrazine (N2H 4) and batteries be as
close to room temperature as possible.

As described in this paper, these diverse requirements were fulfilled by the

design of a unique spacecraft TCS which was composed mainly of passive

components. The only active components were thermal control heaters that

augmented the passive design. The exterior thermal design that was developed,

protected the spacecraft and its components from the orbital environmental fluxes,

while maximizing the use of these fluxes to reduce heater requirements. The use

of the space heat sink had been maximized in the exterior thermal design of the

cryogenic components. The interior thermal design of the Electronics Bays
maximized the use of power dissipation from each electronics box to reduce heater

power. The thermal components of the spacecraft were all existing, flight qualified

hardware consisting of MLI blankets, thermal coatings, surfaces and finishes,

thermal conduction enhancers and insulators, andOSRs. Mounting details of
electronics boxes, N2H 4 tanks, and batteries were developed for either conduction

coupling or decoupling in order to satisfy specific temperature requirements.

"Geometric and thermal math models were developed, both for the exterior and

interior surfaces and for the components of the spacecraft. This thermal design

was analytically verified by the use of these math models. Temperature

predictions were made for all components, and the capability of the TCS to



maintain the component temperatures in compliance with the specification
provided for by the various subsystems was verified analytically. Four on-orbit
mission conditions and phases were analyzed, and the TCS viability verified for
each. Heater power was calculated for make-up, load substitution and survival
temperature conditions for each electronics component.

For an initial trade on the effects of the spacecraft thermal design on the
heat leak into the largest LH2storage tank, the Supply Tank, geometric and thermal
math models were developed for its module. Parametric studies with various
thermal control materials were performed to determine impacts on heat leakage
before a final selection on the outer surface material for this and the other LH2
tanks was made. Another trade was performed on the spacecraft attitude impacts
on the thermal performance of this Supply Tank. The results of this study was one
of the criteria by which the final COLD-SAT spacecraft altitude for this study was
selected.

Materials for the spacecraft TCS were selected based on consideration of
availability, heritage, cost, weight and reliability. The preliminary selected thermal
design has been documented in this paper.

SPACECRAFT DESCRIPTION

The Lewis version of the COLD-SAT spacecraft, shown in Fig. 1 and described
in Ref. 1, was estimated to weigh approximately 6600 pounds and would be

launched by an Atlas-Centaur into a 18 ° inclination, 550 NM low-earth circular

orbit from Cape Kennedy. At this inclination, the sun makes a/_ angle of +41 °
relative to the orbit plane. The orbit has a period of 105.46 minutes, nodal

regression rate of 5.66 degrees/day and eclipse times ranging from 28 to 35

minutes. COLD-SAT was a 3-axis stabilized spacecraft and was configured for a
11 ft diameter payload fairing.

The spacecraft had all the usual housekeeping subsystems of Structural, TCS,

TT&C, ACS, Power and Propulsion. In addition, there was an Experiment

Subsystem that was comprised of LH 2 tankage, two independent pressurization

systems, electronics boxes, instrumentation and fluid handling components. For

the purpose of easy assembly and maintenance, the spacecraft had been

configured in a modular design, consisting of five separate modules (Fig. 2). Each

module was independently supported by its Iongerons. Three of the modules form

the Experiment Subsystem which consisted of the cryogenic LH 2 tankage and

components, and the other two were modules for the spacecraft bus subsystems.
The bus modules consisted primarily of electronics boxes, attitude control sensors,

N2H4 tanks, lines and thrusters for Propulsion and batteries for the Power

Subsystem. These modules were, beginning from the spacecraft aft end:

Electronics Bay No. 1, Supply Tank, Electronics Bay No. 2, Receiver Tank No. 1

and Receiver Tank No. 2. The five modules, when coupled to and supported by
the Structural Subsystem, formed the complete spacecraft.
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Electronics Bay Modules. The Electronics Bay No. 1 (EB1) module weighed
745 Ib and consisted of mostly electronics boxes and batteries which were

mounted on the sidewalls of the Bay (Fig. 3). It also included four, 22-inch

diameter propellant tanks containing 600 Ib of N2H 4 and other components of the

Propulsion Subsystem. These tanks were mounted on a plate located in the center
of the Bay. On four of the eight sidewalls were mounted propulsion thrusters to

provide the required attitude control and Iow-g axial thrusting. In addition, there

was a gimballed thruster for performing bi-axial thrusting with a maximum gimbal
axis of +15° per axis. Sun sensors and their electronics were also located here.

The Electronics Bay No. 2 (EB2) was similar in design to the EB1, but only
contained electronics boxes which were mounted on the bay sidewalls. Horizon

sensor optics and electronics were also located here (Fig. 4). This module weighed
262 lb.

__unp!v Tank Module. This module weighed 1696 lb. and consisted of a 144
ft 3, AL 5083 pressure vessel (PV) which supplied fluid to other subsystem

components (Fig. 5). It was cylindrical with ellipsoidal dome ends and, when filled

to a 92% fill level, contained 565 Ib of LH 2 at 20 psia. It was supported by

fiberglass struts which attached to its girth rings. The PV was surrounded by a
aluminum "can" which supported a MLI blanket and thermally isolated the PV from

direct MLi radiation and conduction. The "can" consisted of 3/8-in. AL 5056 core

and was supported off the tank support struts by sleeves at a distance of 2-in.

from the PV. External to the MLI layers was a purge diaphragm which contained

the GHe used to purge the volume between the diaphragm and the PV, including
the MLI. Purging would be performed before filling the PV with LH 2 to prevent the
liquefaction of air on the tank and related surfaces prior to launch.

An AL 6061 Plumbing Tray (Fig. 6) was located just outside the spacecraft

structure and contained the plumbing and wiring harnesses for the cryogen tanks.

Also in the module were two, 2000 psia, SS 304 hydrogen vaporizer bottles with

a storage capacity of 3.5 Ib of LH 2 each. These vaporizers produced gas from LH 2

withdrawn from the Supply Tank for autogenous pressurization prior to transfer. In

addition to the vaporizers, two 3000 psia, filament wound, metal lined composite

bottles stored 8.5 Ib of GHe to provide another source of pressurant. In keeping
with the modular concept, individual plumbing and electrical components for the

Experiment Subsystem were mounted on several panels based on functional
requirements.

Attached to the Supply Tank module Iongerons were two fixed solar arrays,
canted at an optimum 13 ° angle to reduce the cosine/Y angle penalty of solar flux

on power generation. The array had a 2050 W BOL peak power capability with a

190 ft 2 total area. A HGA was also mounted off the Iongerons on a boom,

through which TDRSS communication was to be established 13 min per orbit for
downlink of data.

Receiver Tank Modules. The Large Receiver Tank module weighed 263 Ib
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and consisted of a 21 ft 3 non-vacuum jacketed insulated tank. The tank was
cylindrical with ellipsoidal heads. The Small Receiver Tank module weighed 200 Ib
and was similar to the previous module (a cylindrical, 13.5 ft 3 tank with ellipsoidal
heads). Both tanks were made of AL 5083, had a 0.5-in. thick honeycomb "can"
which surrounded the PV and were each supported by S-2 glass/epoxy struts from
the module Iongerons.

SPACECRAFT ATTITUDE SELECTION

Since the COLD-SAT spacecraft was comprised of cryogenic components,

an important consideration in spacecraft thermal design was to minimize the

parasitic heat leakage into the three LH 2 tanks. Initial studies had indicated that,
among the PV heat leak contributors for the Supply Tank, the manganin

instrumentation wiring, AI power wiring and SS304 plumbing lines were the major

contributors. Therefore, it was decided to route all wiring and plumbing lines on

the Plumbing Tray that was to be located on a side of the spacecraft that was

minimally impacted by solar flux, and would thus be at a lowest possible

temperature. This tray was conductively isolated from the spacecraft structure

and was radiatively cooled to space to achieve cold temperatures. From the

concept of modularity in the COLD-SAT spacecraft design, individual plumbing and

wiring harness components were distributed onto several panels, grouped by their
functional requirements. Some of these panels had to be maintained in a warm

environment, and were therefore located on the "hot" side of the spacecraft.

Remaining panels were located on the spacecraft "cold" side to take advantage of

the lack of solar flux and to remain as cold as possible, for cryogenic tankage

parasitic heat leakage reduction. The spacecraft was, therefore, to be thermally

bifurcated into a "hot" and a "cold" side (Fig. 7).

This bifurcation was achieved by constraining the solar arrays to be of a
fixed, non-articulating type so that only sun-tracking, "quasi-inertial" attitudes were

possible. In these attitudes, the spacecraft was oriented to have the fixed arrays

constantly face the sun while rotating about one of its axis to track the sun at one

revolution per year. With only quasi-inertial attitudes as the optimum thermal

orientations for the cryogenic tankage and components, two specific attitudes

were possible, as indicated in Fig. 8. These attitudes resulted in large portions of

the spacecraft becoming incident to the solar flux, thereby creating a "hot" side of

the spacecraft. Considerably higher temperature excursions occured on this "hot"

side as compared to the other anti-sun side. The anti-sun side, being exposed to

radiation to space and the comparatively lower earth albedo and infra-red fluxes,

acted as a "cold" side and thus performed in lower temperature ranges. Trade
studies were conducted on the impact of each of these two possible attitudes on

the cryogenic performance of the Supply Tank. The attitude with the least thermal

impact resulting in the lowest heat leakage into the Supply Tank PV was to be
selected.
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In one of the attitudes under consideration, named Attitude "A" (Fig. 8a),
the long axis (x-axis) of the spacecraft was co-planer with the orbit plane. The
fixed solar arrays were canted at an optimized 13° to orbit normal. When the
angle of the sun line to the orbit plane (/5'angle) was 0 °, the spacecraft EB1
module shielded the Supply Tank and other tanks from solar flux. This provided
the coldest tank thermal condition for this attitude. As the sun travelled to the
maximum of fl = 41 ° (for the selected orbital inclination of 18°), the projected

area of the Supply Tank to the sun line was impacted from solar flux. This created
the warmest environment for this attitude.

The wide variation in the surface temperatures of the Supply Tank resulting
from the/_'=O toil=+41 thermal conditions are shown in Fig. 9.

For the/Y = 0 ° case, since the solar flux was in line with the long axis of the

spacecraft, there was no solar flux impact on the Supply Tank. Consequently, the
average temperature profile of the sun facing or "hot" side and the anti-sun or

"cold" side were similar (-85°F to -140°F). However, for the/Y = 41 ° case, when

the sun was no longer colinear with the spacecraft long axis, the sun facing side of
the Supply Tank increased to as high as + 10°F whereas the anti-sun or "cold"
side went up to only -80°F.

The other possible attitude investigated herein was referred to as Attitude
"B" in which the spacecraft long axis was normal to the orbit plane. The fixed

solar arrays were canted as before. By rotating the spacecraft around its Z-axis, as

shown in Fig. 8b, arrays remained sun pointed forfl = +41°. ForB=0, thesolar

flux impacted the projected Supply Tank area broadside. This produced the

warmest environment for the Supply Tank. For the maximum B=+41 ,the least

projected area was available for the solar flux, hence the coldest conditions for the
tank.

For establishing spacecraft attitude dependent heat leaks into the Supply

Tank it was important to determine the hot boundary condition for each of the
sources of parasitic heat leaks: (1) purge diaphragm for the MLI, (2) spacecraft

structure for the tank support struts and (3) the Plumbing Tray for the wiring and
plumbing. The spacecraft and Supply Tank TRASYS-II and SlNDA'85 models were

performed for this analysis. The analysis results for the attitudes of interest are

presented in Fig. 10 for the purge diaphragm where the surface temperature is
plotted versus orbital time.

The profiles for the average temperature of the eight structural Iongerons
and also the Plumbing Tray were found to be constant. These values are tabulated

in Table 1 below. For the Attitude "A",/Y = 0 °, due to the lack of solar flux, both

the longerons and tray were identical at -102°F. However, as the sun angle goes
to _' = 41 °, the Iongeron average temperature rises to

-44°F. Since the tray is on the anti-sun or "cold" side, it remains at a stable -

98°F. Temperatures for both components increased tremendously for the Attitude
"a".
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It can be seen that the Attitude "A" for a/5' = 0 ° had the lowest
temperature due to the blocking of the solar flux by the aft end of the spacecraft.
This temperature increased for the/Y = 41 ° cases, since the sun was now
impinging more broadside on the Supply Tank. The temperature profile for the
Attitude "B", fl = 0 ° and 41 ° was slightly higher at its peak than the/_= 0 ° case.

It can be surmised that this was due to the forward end of the purge diaphragm

being heated through the central cavity of the EB2 at this high/Y angle. It could

also have been due to a higher radiation contribution from the front MLI of the
EBI.

From the Supply Tank results, it was evident that by placing the Plumbing

Tray on the spacecraft "cold" side, much less parasitic heat leakage through the

plumbing lines and wiring into the Supply Tank would occur. As shown in Fig. 11,

there was minimal (4°F) change in the Plumbing Tray temperature regardless of the

fl = 0 or/5' = 41 ° orbital conditions.

Total average heat fluxes on the Supply Tank PV are presented in Fig. 12 for

the four extreme cases. It was evident that for the thermal design used in this

analysis, the Attitude "A" best case of/Y = 0 ° produced a 48 percent lower heat
flux (0.0559 Btu/hr-ft 2) relative to the/Y = 41 ° case for Attitude "B" (0.0826).

Comparably, the/Y = 41 ° worst case for the worst case for the Attitude "A"

(0.0728) produced a 22 percent lower heat flux than B = 0 ° for Attitude "B"
(0.0891). Attitude "A" was consequently selected as the nominal COLD-SAT

spacecraft attitude. Further discussion is given in Ref. 2.

In a six month period, given the COLD-SAT orbital parameters and for any

launch window, the sun will cross the orbital plane a maximum of five times. To

maintain the "hot"/"cold" side restriction on the spacecraft periphery, the

spacecraft will have to perform a 180 ° roll maneuver around its long axis

whenever the sun crosses the orbit plane. This is necessary to ensure that the

same side of the spacecraft would remain in view of the sun at fl = 41 °, and also

to keep the arrays generally sun-pointed.

TCS DESIGN PHILOSOPHY

The COLD-SAT TCS was designed in accordance with the design philosophy

of utilizing simple, flight-proven thermal control hardware to maintain acceptable
component temperatures with adequate margins during all mission phases.

Temperatures were controlled by techniques derived from previous spacecraft

programs, featuring primarily conventional passive design elements augmented as

required by proportionally controlled heaters. Passive design components included
MLI blankets, selected surface finishes, foils and tapes, conduction-

coupled/decoupled mounting details and OSRs. Louvers and heat pipes were not

considered due to the consideration of increased cost, decreased reliability and

complicated integration. Active components included resistance heaters,
thermistors and autonomous dual temperature heater controllers. This approach
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provided simple, yet highly reliable, temperature control for all mission conditions.

The TCS was designed to perform under the worst-case combination of
external environment and equipment power dissipations to be experienced by the
spacecraft. The subsystem provideda margin of 35 °F above and 20°F below the
minimum and maximum component non-operating temperatures, respectively, for
operation under all mission conditions. These conditions accounted for EOL
electrical power availability and variation in environmental fluxes, as well as
degradation in surface properties. Since COLD-SAT was a cryogenic
experimentation spacecraft, minimization of boil-off losses to enhance cryogen
storage life was an important consideration. Every attempt was made to reduce
the heat leaks into the LH2 Supply and Receiver Tanks by lowering the hot side
boundary temperatures of these leak paths.

The heater power was minimized for all mission phases. Survival heaters for
pre-operational housekeeping heater power and make-up heater power during
eclipses were minimized, in addition, electronics box back-up heaters did not
provide additional load to the Power Subsystem. These back-up heaters were to
be turned on only to maintain non-operating temperatures on electronics boxes,
when these boxes are non-operating. The TCS design approach did not require
that restrictions be placed on the electronics operating duty cycles, which was
100% for all components. Commandable back-up heaters for load substitution
were configured to accommodate a broad range of operational conditions for loss
of power and also seasonal conditions.

The performance of the MLI blanket design for cryogenic applications was
based on previously flown and qualified hardware heritage configuration from the
IRAS and COBE spacecraft programs, rather than ground based laboratory studies.
The performance of the spacecraft thermal control blankets was based on effective
E data that is unpublished but verified by testing and flight performance by a
major aerospace contractor. BOL data for optical thermo-physical properties of MLI
was considered in the design due to the short duration of the mission. No
degradation for outgassing, solar illumination, plume effects and electrostatic
charging were included.

While the TCS provided thermal control for all spacecraft components,
control requirements for certain critical elements were key factors in the design,
and are worthy of particular note:

1. For the Experiment Subsystem Supply Tank Module, total average heat leak
into the PV from all conductive and radiative sources had to be less than 0.1
Btu/hr-ft 2 (based on Supply Tank PV wall area). To achieve this goal, the purge
diaphragm outer surface had to be maintained as cold as possible to reduce MLI
radiative heat leaks. In addition, the spacecraft structure, off which the Supply
Tank is supported, had to be maintained as cold as possible to reduce parasitic
conductive heat leaks through the tank support struts. The Plumbing Tray, from
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which all plumbing and wiring harnesses proceed to the Supply Tank, had to be
maintained as cold as possible to minimize parasitic conduction. The two receiver
tanks of the Experiment Subsystem had average heat leak design goals of 0.5
Btu/hr-ft 2. Since these were higher than the Supply Tank heat leak goal, the
Supply Tank was considered to be the design driver for tankage outer surface
material selection.

2. For the Propulsion Subsystem, the N2H4 storage tanks and the GHe pressurant
bottles were to be maintained above 40°F, allowing ample margin above the
freezing point temperatures of N2H4 (34.8°F). Temperature differences between
interconnected tanks were maintained below IO°F to preclude significant changes
in spacecraft center of mass resulting from thermally induced flows. However,
heater power requirements were to be minimized by tank layout and passive
control, allowing for the maximum use of available power from the spacecraft
electronics dissipation and making power available for other uses.

3. For the Power Subsystem, to maintain optimal performance and recharge
capability throughout mission life, the nickel-cadmium batteries were to be
maintained within their preferred operating temperature range of 30 ° to 85°F.

4. For the TT&C Subsystem, thermal distortion of antenna reflectors and their
supports was minimized to reduce associated radio frequency (RF) losses.

TCS ANALYTICAL MODELS

The COLD-SAT Spacecraft TCS was analyzed using NASA standard

computer codes, using which detailed geometric and thermal models were
developed. All analysis was performed for the selected attitude "A" for the

spacecraft. The TRASYS-II code was used to calculate radiation coupling factors

for spacecraft exterior and interior surfaces. Also calculated were absorbed on-

orbit heat fluxes of solar, earth albedo and earth infra-red on the exterior surfaces

for several/Y angle orientations, as described previously. The spacecraft geometry

was sub- divided into six groupings and a TRASYS-II geometric model was

developed for the radiation analysis of each group. These six groups are: all

spacecraft exterior surfaces; EB1 exterior and interior; EB2 exterior and interior;

and the Structural Subsystem. The outputs from each of the six models were

combined to form the inputs for the spacecraft-level thermal analysis.

The thermal analysis was performed using the SINDA'85 code into which

TRASYS-II inputs were provided to complete the physical design description of the

spacecraft. Here, additional hand calculated radiative couplings were combined

with the SINDA'85 mathematical description of the nodes for thermal capacitance,

equipment thermal dissipations and conductive couplings. This information

permitted spacecraft thermal balance computations to be made for specific

attitudes and operational conditions of interest. The SINDA'85 output included

spacecraft and Experiment Subsystem component temperatures and heater power
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predictions based on equipment power dissipations and temperature ranges
specified. From a manageability consideration, four SINDA'85 thermal math
models were developed: all spacecraft exterior surfaces; EB1 and EB2 interior and
exterior; and the Structural Subsystem. After debugging of each model, these four
models were combined for final results at the overall spacecraft level.

Four spacecraft orbital conditions (Fig. 13) were evaluated to determine the
viability of the TCS design. Hot case (B = 41 °), Cold Case (/5' = 0°), Loss of

Attitude Case (fl = 0 °, with the spacecraft long axis normal to the orbit plane, and

sun incident on the battery panel), and Load Shedding Case (fl = 0 °, and zero

power dissipation from electronics). Make-up heater power requirements were

calculated to maintain components within their operating temperature ranges.
Survival heater requirements were calculated to maintain electronics at cold start

temperature (-5°F) and the N2H 4 above freezing (40°F), for the case of spacecraft
bus load shedding situation. To increase conduction from the electronics boxes to

the mounting honeycomb panels, Chotherm 1671 conduction enhancers were used

and modelled. Also, EB1 and EB2 were conductively isolated at the structure from

the Experiment Tank Modules due to conflicting thermal control requirements and
this isolation was also modelled.

The spacecraft altitude was modelled as 550NM with an orbit inclination of

18 ° at which the/Yangle range is0 ° to 41° For the/5' = 41°, solar flux was

modelled to be incident on the "hot" side of the spacecraft only. The values of
solar flux, albedo and earth infra-red were 444 Btu/hr-ft 2, 0.3 and 77 Btu/hr-ft 2

respectively. Solar arrays were modelled as non-articulating, but canted at 13 ° to

orbit normal. The design life of the spacecraft is six months; consequently, only

BOL thermo-optical properties were considered in this analysis.

The area of each OSR radiator was parametrically sized according to

maximum solar flux, OSR solar a (0.1) and maximum and minimum power
dissipations. Initial estimates were obtained by hand calculations for thermal

balance and parametric computer runs were performed with SINDA'85 to

determine final areas. The heaters were sized by the HEATER subroutine in
SINDA'85 given the desired temperature set points.

Among all the mission phases that the COLD-SAT spacecraft would

undergo, the "attitude acquire" phase and the "on-orbit peak" phase were

identified as the lowest and the highest power dissipation phases, respectively.
The on-orbit dissipation levels of all the COLD-SAT spacecraft components for

these two phases are provided in Ref. 1. For conciseness, subtotals for each

subsystem are given in Table 2. The lowest and the highest power dissipations are

547W and 674W respectively, as used in the analysis, and for which the TCS was

designed. The attitude acquire dissipations were used to perform the cold case

thermal analysis for fl = 0 ° and the on-orbit peak dissipation were used for the hot

case analysis for fl = 41 ° Some spacecraft components such as the HGA Gimbal

Motor and the Propulsion Subsystem valves and plumbing components were not
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included in the math models developed for the thermal analysis. The Gimbal Motor

was at the end of a support boom and away from the other spacecraft

components, and therefore, did not have any temperature effects on others.

Similarly, the propulsion valves were also remote and operated intermittently.

These components, however, did have their individual thermal control to maintain

them within the temperature specifications.

The design temperatures of all the spacecraft components for the

operational and non-operational ranges are documented in Ref. 1 and summarized

in Table 3 here. The minimum non-operational temperature of -5°F was selected

as the cold start turn-on temperature for the electronics. It should be noted that

the maximum temperatures for the Vent and Vaporizer Panels was based on the

condition when there was no LH 2 flowing through them. In summation, the
electronics boxes were to be maintained between 30 ° to 125 °F, the batteries

within 30 ° to 85°F and the N2H 4 components within 40 ° to 120°F. The

experiment LH2 tank outer surfaces, supports, plumbing and wiring were to be as
cold as possible. Some of the experiment panels were to be as cold as possible,

while others were to be kept relatively warm in room temperature conditions.

The analyses were performed with TRASYS-II and SINDA'85 on a VAX

8600 using ITPLOT, XPLOT and GRAPHWRITER for pre-processing of input and

post-processing of results to develop presentation graphics. The spacecraft orbital
conditions that were analyzed and the TRASYS model of the spacecraft exterior

surfaces are shown in Fig. 13.

EXTERIOR TCS DESIGN SELECTED

Exterior thermal control was applied to those surfaces and areas of the

spacecraft which were exposed to heat gain from the orbital fluxes of solar, earth

albedo and infra-red and to heat loss by radiation to deep space. The exterior

thermal control of the COLD-SAT spacecraft is shown in Fig. 14 and is described
below:

Electronics Bays. The exterior surfaces of the Spacecraft EB1 and EB2

were covered by specific combinations of OSRs (a/E 0.1/0.79) and MLI to utilize

the diurnal orbital environmental heat exchange for controlling the temperature of

the components within the Bays. This MLI was used to radiatively and

conductively decouple the Bays from heat gain from and loss to the environment
and other portions of the spacecraft. Based on the selected on-orbit attitude of the

spacecraft, the aft end of the EB1 was fixed towards the sun and was completely

covered with MLI. (Several small cutouts would have to be made in the aft MLI

blanket in places where the ELY payload attach fitting bolts to the spacecraft.

Whlte paint would be used in these locations in lieu of MLI).

The MLI would have 12 layers of double aluminized Kapton (DAK) interspersed

with Dacron net spacers, with an effective E of 0.025 through the blanket
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thickness. The outer layer of the MLI would have an a/E of 0.49/0.71. Alternate

layers of 1/4-mil double aluminized Kapton and Dacron net would be sandwiched
between outer layers of 2-mil reinforced Kapton with inner surface aluminized. The

layers would be sewn together with nylon thread, and large sections of blanket
material would be joined to each other and to the spacecraft using Velcro zipper

material. To avoid charge buildup on MLI surfaces, several 2-mil thick aluminum

grounding straps would be attached with soft aluminum rivets to aluminized
surfaces. In addition, the outer surface of the outer layer would be coated with

Indium Tin Oxide (ITO) to prevent electrostatic charge buildup.

Outgassing of volatile compounds from MLI blankets during the mission

would be minimized by pre-flight thermal vacuum decontamination bake-out.

Remaining residual outgassing during the mission would be directed away from the
sensitive OSR radiator surfaces by preferentially located venting holes.

The side panels of the Bays (E, W, N, S, NE, NW, SW, SE) included selective

placement of OSRs beneath components having high heat dissipations. OSR
radiators on the external side surfaces of these Bays would provide the means for

the external radiation of excess heat generated by the components that cannot be

utilized for temperature control by the Bay internals. The front panel of the EB1
would have two additional OSR radiators for the two batteries. The OSR radiator

surface area requirements were determined by parametric analysis to accommodate

both the high and the low power dissipation cases and are presented in Table 4.

The OSRs would be second surface mirrors made from silver plated O.O06-inch

fused silica. Individual 1 in 2 mirrors would be placed 15-mils apart and bonded

with electrically conductive blue solithane to the outer aluminum facesheets of the

EB1 side panels. Of all potential radiation surfaces available for use in the COLD-

SAT spacecraft, OSRs were chosen because of the stability of their properties in
the on-orbit environment for this critical application. Individual radiators have

measured solar a values of 0.06 at BOL. The OSR system, including gaps between

individual mirrors, would have a E of 0.75 and a BOL a of 0.09. Some

degradation in a/E results from ultraviolet radiation and particle fluence, as well as

from induced contamination by thruster exhaust plumes and outgassing spacecraft
materials. The OSR a/E conservative values used in the analysis reflect this

degradation.

The remaining exterior areas of the two bays would also be covered with

MLI. By using MLI, the EB2 would be radiatively decoupled from the Large

Receiver Tank No. 2 which protrudes through the EB2 central cavity. Each

Electronic Bay Module (Modules 3 and 5) was conductively decoupled from heat

loss to the cryogenic Modules (Modules 1, 2 and 4) via the spacecraft structure.

This decoupling was achieved by the use of thermally isolating I/2-inch thick pads

of G-IO fiberglass or Vespel located at the interfacing flanges of the structural

Iongerons. Vespel was preferred due to its resistance to moisture absorption. The

thermo-optical properties for each exterior thermal control surface and finish is
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presented in Fig. 14. All the side, front and aft panels of the two Bays were highly

conduction coupled due to the use of Aluminum (AI) honeycomb core with AI

facesheets. This high conduction facilitated the diffusion of heat from any source

to prevent localized temperature excursions.
t

Experiment Tankage. The Experiment Tankage consisted of the LH 2 Supply

Tank, LH 2 Receiver Tanks No. 1 and 2, two GHe pressurant bottles, the GH 2

vaporizer and the GH 2 accumulator. The PVs of the three LH 2 tanks were each

surrounded by an AI honeycomb sandwich "can" which supported a 30-layer MLI

blanket. On the Supply Tank, external to the ML! layers was a purge diaphragm
which contained the GHe used to purge the volume between the purge diaphragm

and the PV, including the MLI. The purge diaphragm consisted of two Kevlar-cloth

reinforced layers, separated by an embossed Kapton layer. The outer layer had a
coating of second surface silverized Teflon (SSST, e/E 0.09/0.75) in order to keep

this outer layer ata lowest possible temperature. A Iower temperature of the outer

surface reduced the parasitic heat leak through the MLI to the "can". Further

details of their design can be obtained from Ref. 3.

The two Receiver Tanks did not have a purge diaphragm since they were not

loaded with LH 2 at launch and, therefore, did not require purging of their MLI
blankets or the PVonthe ground. However, for reducing the parasitic heat leaks

through the MLI while in orbit, both tanks had a similar SSST as the outer layer of
the MLI. Additional sources of heat leaks into the LH 2 tankage was conduction

through tank support struts, power and instrumentation wiring harnesses and

plumbing lines. Each of these conduction paths had a hot temperature boundary

on the spacecraft which provided the unavoidable temperature difference for heat

transfer into the cryogen. The spacecraft structure temperature represented the

hot side boundary temperature for the tank support struts, and the Plumbing Tray

temperature represented the hot side boundary temperatures for the wiring and

plumbing lines routed to the tank. Thermal control of these items is described in

the following two sections.

The GHe and GH 2 bottles were each covered with a 12 layer DAK/Dacron

MLI blanket, with a outer surface a/@ of 0.41/0.50. The GH 2 bottles were located
on the "hot" side of the spacecraft in order to reduce the heater requirements for

vaporizing the LH 2 to gas. In contrast, the GHe bottles were maintained as cold as
possible on the "cold" side of the spacecraft. All four bottles were decoupled from

their support structure by thermally isolating G-10 or Vespel Pads, as described

previously.

Spacecraft Structure. Distortion of the spacecraft exterior support structure

due to changes in orbital fluxes at sunrise and sunset was minimized by the use of

12-layer MLI blankets (outer surface e/@ of 0.49/0.71). For the cryogenic

Modules (1, 2, 4), to minimize parasitic strut conduction into the cryogen tankage,
the structure was maintained at a lowest possible temperature by the use of SSST

as the outer layer of the MLI. Unfortunately, this low temperature of the structure
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would also act as a heat sink for the heat dissipated in the Electronics Bays, which

if not controlled, could cause the component temperatures to reduce drastically.

Consequently, to avoid this situation, the structural Iongerons of the three

cryogenic tank modules were conductively isolated from the Electronics Bay
structure by the use of Vespel pads at each interfacing flange. The entire structure

was constructed of highly conductive AI which precluded the buildup of high

temperature areas in the structure on the "hot" side of the spacecraft. The

structure within each Bay was considered as a part of the interior for that Bay, and
its thermal control is described later.

Plumbing Trays and Panels. The Plumbing Tray was located just outside

the spacecraft structure on the "cold" side of the spacecraft, which allowed the

plumbing and wiring penetrations of the LH 2 tankage to assume as low a

temperature as possible before they entered each of the three LH 2 tank MLI
blankets. A lower hot end boundary temperature of these conductive paths

lowered the parasitic heat leakage. The Plumbing Tray was attached to the

spacecraft structure with stainless steel bolts and G-IO fiberglass spacers in an
attempt to thermally isolate it from the spacecraft. This Tray was covered with an

MLi blanket with a SSST outer layer to act as a radiator, as shown in Fig. 6.

All component panels were MLI covered with individual thermal control

outer layers, as shown in Figs. 6 and 7. Plumbing and wiring from all panels

proceeded to the Plumbing Tray before penetrating the PVs of the three LH 2 tanks.

The "hot" side panels also provided solar flux blockage to the Supply Tank. As in
the case of the Plumbing Tray, all panels were conductively decoupled from the

spacecraft structure using G-IO spacers.

Thermal control heaters were located on the Vent, Vaporizer and

Connector Panels, and were budgeted to the Experiment Subsystem. A heater

requirements summary is provided in Table 5 for each subsystem and component

level details are in Ref. 1. Heaters were the only active portion of the TCS and

would be composed of Kapton film strip heaters, DTCs and temperature sensors.

DTCs would provide automatic control of heaters on the basis of sensor

temperature, incorporating the following design features: proportional control of

heater power, adjustable set point temperatures and heater output power, heater

on/full-on temperature difference of 2°F and ground commandable override

capability.

Solar Arrays. Minimization of operational solar array temperatures was

achieved passively. Although the back of the solar array received no direct solar

flux, it did receive large levels of reflected solar radiation from other spacecraft
surfaces, and was finished with a high E Chemgtaze Z-202 white paint (e/E

0.2"/0.89) to maximize heat rejection. Measured optical properties (a/E 0.73/0.86)
were obtained from the vendor for the Solarex boron silicate cesium solar cells

selected. Each solar array hinge/damper would require a low wattage,

thermostatically controlled, ground-enabled heater power approximately 30

14



minutes prior to array deployment. The array booms were covered with an MLI
blanket and finished with Iow-E tape on anti-sun sides and low-a, high E tape on
the sun-facing sides to minimize boom distortion.

Antenna. Distortion of the HGAand its support boom was minimized

passively by the use of MLI blankets on the boom, AI foil (a/E 0.35/0.55) on the

dish sun-facing side and Chemglaze Z-202 (a/E 0.2/0.89) white paint on the dish
anti-sun side. The HGA motor was MLI covered and had a redundant, thermistor

controlled make-up heater. The HGA boom and its deployment hinge/damper had

a treatment similar to the solar array boom. The LGAs were conductively coupled

to the EB1 panels which were, therefore, maintained in the 30-125°F range. The

HGA AI foil would not be electrically grounded to the spacecraft since that could

cause deterioration of the RF performance. The MLi covering on the booms would
minimize relative deflection and the AI foil would minimize focused solar reflection.

Components. The N2H 4 Thruster Modules were conductively coupled to the

EB1 side panels, would have MLI blankets and require heaters for the thruster

valves and the catalyze beds, as shown in Fig. 15. These heaters would provide

temperatures of 40 °F or higher at ignition and would be maintained by ground
commandable, redundant DTC control. Propellant lines were partially wrapped in

Iow-E tape (75% tape, 25% black) and would have heaters. The Propellant

Distribution Assembly would have a 12-layer MLI covering (a/E 0.41/0.50) and

would have thermostatically controlled heaters. The gimballed thruster was

conductively coupled to the N2H 4 tank support plate which was located inside the
EB1.

The sun sensor optics, which protruded the MLI blanket of the EB1, were an

integral part of the sensor electronics. Therefore, no separate thermal control of

the optics was required. The horizon sensor optics would be MLI covered where

the optical head protrudes the EB2 mounting panel. Aslit would be provided in the
MLI for the mirror.

INTERIOR TCS DESIGN SELECTED

Interior thermal control was applied to the internals of the EB1 and EB2
enclosures, and the electronics boxes, attitude control sensors, batteries and

propulsion components located within. The internal component layouts and the

passive surface finishes are described below:

Electronics Bays. In the EB1, theTT&C Subsystem components such as

the computers, transponders, RF processing box, solid state recorders, command
and telemetry units, and sequencers were mounted to the insides of the panels on

theeight sides of the enclosure. In addition, there were the Power, ACS and

Experiment Subsystem electronics boxes which were similarly mounted. These

panels provided an efficient means for spreading and rejecting the high thermal

dissipation loads of the electronics components, all of which had a duty cycle of
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100%. The Propulsion Subsystem N2H 2 tankage were mounted on an AI
honeycomb sandwich plate in the center of the EB1. The EB2 contained additional

electronics boxes belonging to the TT&C, Experiment and ACS.

The interior surfaces of the Bays were painted with a high a/(E (0.95/0.85),
Chemglaze Z-306 black paint to enhance radiative coupling and thus heat

exchange between the boxes, panels, N2H 4 tanks and the support structure (Fig.

3). The boxes, structure, tanks and the plate were also painted black promoting

augmented heat rejection to the Bay interior. To enhance conductive coupling

from the base of each box to the OSR radiators on the outer surface of the panels,

silicone boron nitride Chotherm 1671 was used as a 0.125 inch thick thermally
conductive interface mounting sheet under each box. The tank support plate was

conductively isolated from the side panels and the tanks themselves were isolated

from their support plate. A similar thermal control scheme using high (E black

paint was used for the EB2 (Fig. 4).

Chotherm 1671 is a thermally conductive interface material designed for

transferring heat from electronics components to heat sinks. It is comprised of a
silicone binder with boron nitride as the thermally conductive filler. Unlike mica or

beryllium oxide, Chotherm does not require thermal grease. Greaseless application

of Chotherm precludes the contamination, cracking, migration or drying out
associated with greases. It is available in sheet sizes and meets NASA's

outgassing requirements. The advantage of using Chotherm is that it reduces the
uncertainties of determining contact conductances between two surfaces for use

in the thermal analysis models.

There were no survival or back-up heaters provided for the electronics boxes

in EB1 since, it had been calculated that in case of loss of power and the ensuing

loss of dissipation, the thermal mass of the N2H" was sufficient to maintain the

boxes within the operating temperature range. This range was maintained longer

than the capability of the batteries to supply power without recharging. Moreover,
since the duty cycle of the EB1 is 100%, the OSRs had been sized by iterative

calculations, so that there is no need for make-up heaters, both for the low power
case (attitude acquire) and high power case (on-orbit peak).

The temperature of the Propulsion Subsystem's four N2H 4 tanks was
maintained above 40°F by ground-commanded redundant heaters. The GHe

pressurant bottles were maintained above 40°F by DTC controlled heaters with

ground commandable override redundant heaters. Temperature differences

between inter-connected N2H 4 tanks were maintained within lO°F by ground-

commandable actuation of back-up heaters as required.

in the EB2, survival heaters were provided in redundant sets for

maintenance of acceptable non-operating temperatures for survival above -5 oF.

These heaters would be enabled automatically when electronics would be made
non-operational.
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Batteries. The Power Subsystem components requiring the most stringent

thermal control were the nickel-cadmium batteries. Each battery dissipated 25W

during the charge and discharge cycles. Because battery life is inversely related to
temperature, a 85°F maximum was desirable to ensure adequate operation

throughout the duration of the mission. Consequently, each battery was located in

two thermal control compartments in EB1, which were isolated from the hotter
(125°F) electronics compartment by structural bulkheads (Fig. 16). The

compartments were covered with MLI blankets on the inner and outer surfaces,

both with a black outer layer (a/E 0.85/0.85). The battery itself was painted

black (a/E 0.85/0.85) on all sides. The forward panels of the compartments were

covered with OSR radiator to which the batteries were radiatively coupled by the

high _E black paint. Battery temperature was maintained above 30°F by redundant

DTCs and heaters with ground override capability. Information on battery thermal
control is obtained from Ref. 4.

The telemetry data and command requirements for the TCS would require

185 channels in theTT&C Subsystem and are described in Ref. 1. The heater

control, location and activation techniques are also provided in Ref. 1. Spacecraft

heaters and associated controllers would be functionally redundant, in cases where

heated units themselves are not. Due to the closed-loop nature of DTC operation,

uplink anomalies would not preclude nominal operation of heaters; however,

grounded commandable override capability would be provided. Certain heaters
would be controlled by ground command only for components associated with

ground-commanded events (e.g. solar array deployment and RCS thruster firings).

SELECTED TCS PERFORMANCE PREDICTIONS

As explained above, four on-orbit thermal cases for the selected spacecraft

attitude were analyzed and shown in Fig. 13:

1. Operational on-orbit cold case with/? = 0 °

2. Operational on-orbit hot case with/Y = 41°

3. On-orbit load shedding case with/Y = 0 °
4. On-orbit loss of attitude case with fl = O°

Predicted temperature results of on-orbit thermal analysis for all subsystems

and components are presented in detail in Ref. 1 and compared to the required
operational temperature ranges. A summary of results is presented in Table 3.

Where the predicted minimum temperature fell below the operational minimum,

heaters were sized to maintain temperature. The minimum temperature was

calculated for the worst on-orbit cold environmental conditions of fl = 0 ° with the

lowest power dissipation from the attitude acquire power profile. The maximum

temperature was calculated for the worst hot case of B = 41 ° and with the

maximum on-orbit peak power dissipation.

Of specific interest were the temperature ranges of the Supply Tank purge
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diaphragm outer surface and the Plumbing Tray, which have previously been
presented graphically in Figs. 9 and 11, respectively, for the cold and hot cases.

For minimizing the heat leak through the MLI blanket, the outer layer of the purge
diaphragm required a thermal control surface with the optimum a/E thermo-optical

properties. For cryogenic tankage on board spacecraft, the goal is to reduce the a

while maximizing E, thereby reducing solar flux absorption and maximizing

radiation to space for the outer surface. This produces the coldest temperature

boundary for the MLi parasitic heat leak.

In the case of the COLD-SAT Supply Tank, three different materials were

considered for the outer layer of the purge diaphragm, namely: aluminized Kapton
with an e/E of 0.49/0.71, Beta cloth with an e/E of 0.22/0.90 and a SSST with

an a/E of 0.09/0.75. White paint was not considered as an outer surface coating

due to the requirement that this diaphragm be flexible, thereby precluding painted

coatings.

Analysis results for the three cases are provided in Fig. 17 for the purge
diaphragm where the surface temperature is plotted versus time. It can be seen

that the SSST produced the lowest temperature profile with the aluminized Kapton

being the warmest. On orbit, when the sun was impinging on the purge

diaphragm, the average surface temperature range was from a minimum of -25 °F

for theSSSTtoa maximum of +25°F for the Kapton. Since the goal was to

design the coldest purge diaphragm outer surface, the SSST was the material that

was selected for the Supply Tank. The effects of varying the e/E properties of the

purge diaphragm outer surface on the total heat flux on the PV are presented in

Fig. 18. As the a/E increased, the temperature of the purge diaphragm increased.

Being the thermal boundary for the heat leakage through the MLI, a higher
diaphragm temperature produced a higher flux. For the materials considered for

the purge diaphragm, the total heat flux varied from 0.0638 Btu/hr-ft 2 for the

lowest case to the highest of 0.0764 producing an increase of 20%. However, all

materials produced fluxes which were within the required goal of O. 1 Btu/hr-ft2.
Further discussion can be obtained in Ref. 3.

Temperature histories for the Propulsion Subsystem N2H 4 tanks are plotted
in Fig. 19, for both the hot and cold cases. Temperatures for both cases are within

the required range. The goal of intra-tank temperature difference to be less than

10 ° was achieved. For the case of load shedding with no power dissipation in EB1

where the N2H 4 tanks are located, it can be seen by extrapolating Fig. 20 that it

will take 35 hours for the N2H4 to freeze at 34.8°F starting from the initial
temperature of 75 °F. This case was analyzed for a worst case condition of B =

0 ° attitude with zero power dissipation in EBI. As seen in Figs. 21 and 22, the

thermal control system for the batteries maintains the temperature within

acceptable range for both the nominal hot and cold cases, and also the loss of
attitude case. The loss of attitude control case was considered when the

spacecraft long axis is perpendicular to the orbit plane and solar flux is incident on

the EB1 Battery No. 2 panel with maximum power dissipation from the rest of the
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electronics.

COLD-SAT heater power requirements have been summarized in Table 5.
Make-up heaters are those that are necessary to maintain a component within
operating range when the component is in normal operating mode and dissipating
power. Back-up heaters are required to maintain the component within operating
temperature range when the component is non-operating. Survival heaters are
needed for maintaining a cold start turn-on temperature of -5°F for electronic
components when these are shut down. Heaters are not required for the EB1
components except for the batteries and the Propulsion Subsystem components.
This is due to the warm environment maintained in the EB1 by the large thermal
mass of the N2H" tanks even when there is a sudden disruption of electrical power
dissipation. This situation may arise when there is a loss of spacecraft attitude
resulting in zero power generation from the solar arrays. For the four hours that
the batteries can supply power without recharging, the temperature of the EB1
electronics boxes stay within operating range due to the N2H" tanks. Fig. 23
shows predicted solar array transient temperature responses for/Y = 0° and _' =
41 ° cases.

CONCLUSION

The COLD-SAT spacecraft Thermal Control Subsystem is a passive design

and uses heaters for augmenting the passive thermal control. The analysis that

has been performed on the design has verified that all critical design goals have

been met. Individual component temperatures are within specified limits for the
duration of the entire mission.
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TABLE 1. SUPPLY TANK STRUCTURE AND PLUMBING TRAY TEMPERATURE,
"F

COMPONENT

LONGERONS

(AVERAGE OF 8)

PLUMBING TRAY

ATTITUDE A

13-0 o 1_-41 o

-102 -44

- 102 -98

AI-I'ITUDE B

p=41 o p-o o

-28 -8

-87 -71

TABLE 2. SUBSYSTEM POWER DISSIPATIONS,
W

SUBSYSTEM ATTITUDE ON-ORBIT
ACQUIRE PEAK

TT&C 309 371
EXPERIMENT 45 100
ACS 73 73
POWER 120 130

r.,

TOTAL 547 674
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TABLE 3. DESIGN AND PREDICTED TEMPERATURE RANGES, OF

SUBSYSTEM/
COMPONENTS

TT&C SUBSYSTEM

COMPUTERS
TRANSPONDERS
RF PROCESSING BOX
SOLID STATE RECORDERS

RMT CMD/TLM UNITS, CTUs
SEQUENCERS
HGA ELECTRONICS/MOTOR
LGAs
REDUNDANCY CONTROL UNIT
COMMAND RECEIVER

OPERATIONAL NON-OPERATIONAL PREDICTED

MIN MAX MIN MAX MIN W/ MAX W/
(_- O) HEATER (_-41) HEATEB

30 125 -5 145 51 92

30 125 -5 145 51 92
30 125 -5 145 60 90
30 125 -5 145 59 90
30 125 -5 145 57 90
30 125 -5 145 59 90

30 125 -5 145 50 79

30 125 -5 145 51 92
30 125 -5 145 58 85
30 125 -5 145 51 92

EXPERIMENT SUBSYSTEM
GHe BOTTLES -65 200 -320 200 -53 -54
GH2 BOTTLES -423 70 -423 200 -52 26
T-O PANEL -423 -100 -423 150 -96 -84

IVAPORIZER PANELS 40 150 -40 150 -88 40 93
IHELIUM PANELS -40 150 -100 150 -36 2
VENT PANELS 0 150 -100 150 -82 0 107
PLUMBING TRAY -423 -100 -423 150 -102 -98

CONNECTOR PANELS 0 100 -100 150 -74 0 125
SUPPLY TANK OUTER -200 0 -300 300 -]15 -75
SURFACE
EXP. DATA UNITS 30 125 -5 145 67 ]03
CONDITIONERS 30 125 -5 145 58 85

DATA ACQ. UNITS 30 125 -5 145 50 92
MOTOR INVERTERS 30 125 -5 145 52 93

SUBSYSTEM/
COMPONENTS

OPERATIONAL NON-OPERATIONAL

MIN MAX MIN MAX

PREDICTED

MIN W/ MAX W/
(_- O) HEATER (_=41) HEATER

PROPU YST M
PROP. DISTRIBUTION ASSY 40 120 40 120 -57 60 -35 60

GHe BOTTLES 40 120 40 120 -74 60 -62 60
N2H4 TANKS 40 ]20 40 120 57 85
ROCKET ENGINE MODULES 40 120 40 120 73 101

30 105 -65 165 60 90
30 125 -5 140 57 B8
15 125 -40 160 48 79
30 125 -5 145 4g 79
30 125 -5 145 52 93
-5 140 -5 140 47 90
15 140 -40 160 73 101

INERTIAL REF. UNIT
HORIZON SENSOR ELECS,
FINE SUN SEN. ELECS.
MAGNETOMETERS
ACS INTERFACE ELECS.
HORIZON SENSORS OPTICS
FINE SUN SEN. OPTICS

85 30 85 48 79
160 -95 160 -70 135
125 -5 145 61 88
125 -5 I45 57 79
125 -5 ]45 60 88

125 -5 145 47 103
50 -lO0 50 -65 -5
50 -150 50 -110 -44

120 40 120 58 85

PWR__
BATTERIES 3O
SOLAR ARRAYS -95
POWER CONTROL UNIT 30
POWER DIST. UNIT 30
PYRO CONTROL BOX 30

TR ST
ELECT. BAY PANELS 30
STRUTS -]00

SUPPLY TANK SUPPORT STR. -]50
N2H4 TANK PLATE 40
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TABLE 4. RADIATOR SURFACE AREA REQUIREMENTS

LOW/HI
PANEL DISSIPATION, W RADIATOR TYPE _/_ DIMENSIONS, IN.

EB #I NORTH

EB #] SOUTH

EB #1 EAST

EB #1 WEST

EB #I NORTH EAST

EB #I NORTH WEST

EB #1 SOUTH EAST

EB #] SOUTH WEST

EB #I FWD/BATT 1

EB #1 FWD/BATT 2

EB #2 NORTH

EB #2 SOUTH

EB #2 EAST

EB #2 WEST

EB #2 NORTH EAST

EB #2 NORTH WEST

EB #2 SOUTH EAST

EB #2 SOUTH WEST

28/28

28/46

31/3]

31/31

58/117

35/45

66/81

77/77

SEE EB #i NORTH

SEE EB #I SOUTH

3/3

3/3

70/70

45/55

Z/2

20135

so/so

o/o

OSR

OSR

OSR

OSR

OSR

OSR

OSR

OSR

OSR

OSR

OSR

OSR

05R

OSR

OSR

OSR

OSR

0.1/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.I/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

0.I/0,79 BOL

0.1/0.79 BOL

0.I/0.79 BOL

0.I/0.79 BOL

0.1/0.79 BOL

0.1/0.79 BOL

I0.0 x 16.0

I0.0 x 16.0

8.75 x 12.0

6.75 x 12.0

14.75 x 24,5

16.75 x 22.5

18.75 x 26.5

9.75 x ]3,25

16.0 x 10.0

16.0 x 10.0

2.0 x 2,0

2.0 x 2.0

]8.0 x 20.0

10.0 x 12.0

1.0 x 1.5

10.0 x 12.0

14.0 x 16.0
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TABLE 5. HEATER REQUIREMENTS SUMMARY

SUBSYSTEM

PROPULSION

POWER

TT&C

ACS

EXPERIMENT

TOTAL

HEATERTYPE

MAKE-UP_
BACK-UPL.
SURVIVAL_

MAKE-UP
BACK-UP
SURVIVAL

MAKE-UP
BACK-UP
SURVIVAL

MAKE-UP
BACK-UP
SURVIVAL

MAKE-UP
BACK-UP
SURVIVAL

MAKE-UP
BACK-UP
SURVIVAL

POWER REQUIREMENTS
W

30
60
25

0
40
27.5

0
0

10

3O
0
6.5

65
100
77

I THERMISTOR CONTROLLED

2 DUAL TEMPERATURE CONTROLLER (DTC) CONTROLLED
3 THERMISTOR CONTROLLED
MAKEUP HEATER DUTY CYCLE 50% OR LESS
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LOW GAIN
ANTENN

SENSOR

SMALL RECEIVER TANK

LARGE RECEIVER TANK

SOLAR ARRAY

THRUSTER MODULE

SUN SENSOR J /

/
HYDRAZINE TANK --/

C-90-06563

;SURANT
BOTTLE

/_
ELECTRONICS - HIGH GAIN
BAY #1 ANTENNA

Figure 1.--Cryogenic on-orbit liquid depot-storage, acquisition, transfer (COLD-SAT) spacecraft.

I

Electronics bay #1

r- Large receiver (module no. 5) --1
I tank (module no. 2) t0
n I
I rSupply tank I
I l-Electronics bay #2 I

--Small receiver I I (module no. 3) II (module no. 4) !
tank (module no. 1) I I I

_ljI ./-_l.Z
.- //f. • ,_i._

GHe pressurant bottles " _ I_
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Figure 2.--Spacecratt modular design.
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Figure 3.--Electronics bay no. 1 interior.
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Figure 4.--Electronics bay no, 2 interior.
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Figure 6.--View of the spacecraft "cold" side showing the plumbing tray.
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Figure 7.--COLD-SAT thermal bifurcation into "hot" and *cold* sides.
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Figure 8.--COLD-SAT spacecraft attitudes considered.
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Figure 9.--Supply tank purge diaphragm temper-
ature for attitude "A",
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Figure 13.--Spacecraft orbital conditions for thermal analysis.
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Figure 14.--COLD-SAT spacecraft exterior thermal control surfaces; thermo-optical properties.
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Figure 16.--Battery thermal control.
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C = Tank no. 2
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Figure 19.--Hydrazine tank results for operational on-orbit case.
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Figure 20.--Hydrazine tank results for load
shedding case.
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Figure 21.--Battery no. 2 results for operational on-orbit case.
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Figure 22.--Battery no. 2 results for loss of attitude case.
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Figure 23.--Solar panel temperatures.
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